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Abstract

A mathematical model of mass transfer in the boundary layer of swirl flow is developed. The equations obtained for
Sherwood number and mass transfer coefficient generalize the equations obtained by Levich for the flat plate to the
case of mass transfer in axisymmetrical swirl flow. For the first time it is shown that, in swirl flows, the mass transfer
is not completely controlled by integral flow parameters (Reynolds number and the swirl number) but depends
essentially on the type of vortex symmetry. The left-handed helical vortices generate wake-like swirl flows and
increase mass transfer in comparison with axial flows. The right-handed helical vortices generate jet-like swirl flows,
which can decrease mass transfer.

List of symbols

c concentration of species (mol
m�3)

dh hydraulic diameter (m)
D molecular diffusivity (m2 s�1)
E axial flux of energy (kg m2 s�1),

dimensionless parameter:
E=qU3R2

G flow circulation (m2 s�1), di-
mensionless parameter: G/RU

J axial flux of momentum
(kg m s�1), dimensionless pa-
rameter: J=qU 2R2

k mass transfer coefficient on the
wall (m s�1)

2pl pitch of vortex lines (m), di-
mensionless parameter: l=R

L length of a cylindrical mass
transfer section (m)

M axial flux of angular momen-
tum (kg m2 s�2), dimensionless
parameter: M=qU 2R3

n empirical power factor
p pressure (kg m s�2), dimen-

sionless parameter: p=qU 2

p0 static pressure in the system
(kg m s�2), dimensionless pa-
rameter: p0=qU2

R = dh=2 radius of a cylindrical mass
transfer section (m)

Re Reynolds number
Q volumetric flow rate (kg s�1),

dimensionless parameter:
Q=qUR2

Sc Schmidt number
S swirl number
Sd design swirl number
Sh Sherwood number
U = Q=R mean axial velocity (m s�1)
V � wu (R) tangential velocity of inviscid

flow on a wall (m s�1)
w0 velocity on a flow axis (m s�1),

dimensionless parameter: w0=U
W � wz(R) axial velocity of inviscid flow

on a wall (m s�1)
(r, u, z) cylindrical coordinate system

in inviscid flow (m, rad, m)
z coordinate oriented along the

flow (m)
(0, wu, wz) velocity components of inviscid

flow (m s�1)
(ux ¼ uu; uy = �ur; uz) velocity components in

boundary layer (m s�1)
(x, y, z) coordinate system in boundary

layer (m)
y = R� r distance from the wall in the

normal direction (m)
x coordinate in the tangential

direction (m)

Greek letters
a empirical constant
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C vortex circulation (m2 s�1), di-
mensionless parameters: C/RU

d diffusion boundary layer
thickness (m)

e radius of vortex core (m), di-
mensionless parameter: e/R

l dynamic viscosity of a fluid
(kg m�1 s�1)

m kinematic viscosity of a fluid
(m2 s�1)

q fluid density (kg m�3)
su, sz local shear stress at the tube

wall (kg m�1 s�2)
xz axial component of a vorticity

(s�1)
xu tangential component of a

vorticity (s�1)

1. Introduction

Swirl flows have a wide range of applications in
various engineering areas. Experimental data [1–9]
reveal a different influence of swirl on mass transfer in
annular and cylindrical tubes. Swirl usually increases
mass transfer, but there are several regimes where the
mass transfer coefficient is smaller in a swirl flow than
in an axial flow [2, 3, 5]. From the hydrodynamic
point of view the major reason for this duality lies in
the incomplete understanding of possible types of
swirl flow. According to the traditional approach [1–8]
all swirl flows (laminar and turbulent, steady and
unsteady, two dimensional and three dimensional) can
be classified into two different types: (i) continuous
swirl flows which maintain their characteristics over
the entire length of mass transfer section; and (ii)
decaying swirl flows. This classification is not com-
plete, as it does not take into account a very
important feature of swirl flows: the existence of
vortex structures with different symmetry, right or left-
handed helical vortices [10]. Recent progress in the
study of these vortex structures reveals the direct
relation between the type of vortex symmetry and the
appearance of swirl flows with jet-like or wake-like
profile of the axial velocity [11–13]. Both of these
types of swirl flows can be continuous or decaying.
Further studies [14–17] have shown that, under the
same integral flow parameters (flow rate, flow circu-
lation, axial fluxes of momentum, angular momentum
and energy) both left-handed and right handed vortex
symmetry can be obtained, and there is even a
possibility of transition from one to another type of
symmetry in the same flow. For this reason, the study
of the influence of vortex symmetry on mass transfer
in swirl flows is of a great interest. This aspect of a
mass transfer problem in swirl flow has not previously
been studied. This is the first attempt to model the
mass transfer in swirl flows with different helical
symmetry of the vorticity field.

2. Flow parameters and model approximations

Reynolds and Schmidt numbers are used for identifica-
tion of convective mass transfer:

Re ¼ Udh

m
ð1aÞ

Sc ¼ m
D

ð1bÞ

In swirl flows an additional parameter, the swirl
number, must be taken into consideration. The defini-
tion of the swirl number varies from author to author.
One of the most general forms of definition of the swirl
number in a cylindrical tube of radius R was proposed
[13] as:

S ¼
R R
0 wuwzr2 dr

R
R R
0 w2

z r dr
ð2Þ

Here wu and wz are tangential and axial components of
the mean flow velocity, r is radial coordinate.

In practical studies and engineering applications, the
swirl number is replaced by a simpler parameter, the
‘design swirl number’. Usually the design swirl number
depends only on the geometrical parameters of the swirl
generator or on the geometry of the vortex device. For
example, in [1, 2] the ratio between the tangential inlet
diameter and the annular channel gap was introduced as
the swirl number, instead of Equation 2. In [4–7] the
swirl number was defined as the angle between swirler
vane and duct axis. The design swirl number definitely
correlates with the more general Equation 2, but this
correlation is specific for each installation.

Usually [5] the hydrodynamics and the mass transfer
data in swirl flows are correlated by means of the
equation

Sh ¼ aRenSc1=3 ð3Þ

where Sh is the Sherwood number, and the empirical
constant a and the power n are determined as functions
of geometrical parameters of swirl generator or vortex
set-up. In other words, Equation 3 postulates that only
three parameters, namely Reynolds (Re), Schmidt (Sc)
and swirl (S) numbers govern mass transfer in swirl
flows.

In reality, the Reynolds and swirl numbers do not
determine only one regime in swirl flow. For example,
four different flow regimes were observed in [10] in the
same set-up for identical Reynolds and swirl numbers.
The reason for these ambiguities is related to different
types of vortex symmetry. Ambiguities in flow regimes
lead to mass transfer ambiguities. This means that
traditional parameters (Equations 1 and 2) are, in
general, insufficient for the prediction of mass transfer
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in swirl flows. Here we propose a new approach for the
prediction of mass transport in swirl flows. The above
mentioned ambiguities in flow regimes will be taken into
account by means of recently developed theory of helical
vortex structures [10]. The equations for Sherwood
number will be obtained by means of classical method-
ology for hydrodynamical and diffusion boundary
layers at high Reynolds and Schmidt numbers.

To simplify the mathematical calculations we shall
consider the simplest case of a swirl flow in a cylindrical
mass transfer section of radius R and length L. Some
additional assumptions are made:
(i) flow regime is steady and axisymmetric; the influ-

ence of turbulent pulsations and three-dimensional
effects are neglected

(ii) the mass transfer section is short, so the developing
hydrodynamic boundary layer does not essentially
influence the inviscid flow core

(iii) the mass transfer does not influence the hydrody-
namics

(iv) the Schmidt number is large (Sc > 1000), so the
diffusion layer is contained within the hydrody-
namic boundary layer

(v) the curvature of hydrodynamic and diffusion
boundary layers is small in comparison with the
tube radius

(vi) the concentration of species at the wall of the mass
transfer section is constant (zero for fast electro-
chemical reactions) and differs from the concen-
tration in the flow core

(vii) for electrochemical processes the effect of migration
is neglected (excess of supporting electrolyte).

We use all these simplifications in our model to achieve
two main goals: (a) to demonstrate that for swirl flows it
is possible to calculate the Sherwood number as a
function of parameters of the inviscid flow core (in the
same way as by Levich for the flat plate [18]); and (b) to
demonstrate the influence of the type of vortex symme-
try on mass transfer.

3. A hydrodynamic model of an inviscid flow

Here we consider swirl flows induced by axisymmetric
helical vortices. Let us suppose that the vortex axis
coincides with the axis of the cylindrical mass transfer
section and that the vortex core has radius e < R
(Figure 1). We assume that the vortex core consists of
helical vortex lines of a constant pitch, 2pl, and has a
constant axial component of vorticity:

xu

xz
¼ r

l
and xz ¼

2C
e2

1; r < e
0; r � e

�
ð4Þ

The spatial step-shape distribution of vorticity Equa-
tion 4 is equivalent to a Rankine vortex when l is equal
to infinity [10].

The inviscid velocity field, which corresponds to the
vorticity distribution Equation 4, has the next form:

wu ¼ C
r

r2=e2; r < e

1; r � e

�
and

wz ¼ w0 �
C
l

r2=e2; r < e

1; r � e

� ð5Þ

Here C is a vortex circulation; w0 is the velocity on the
flow axis (Figure 1). On the one hand, the velocity field
Equation 5 is the exact solution of the Euler equations
[19]. On the other hand, Equation 5 gives a good
approximation of experimental data for various swirl
flows [10, 14–17]. The comparison between Equation 5
and experimental data of [20–22] (set-ups with different
swirlers) is presented on Figures 2–4. Equation 5 may
be used for modeling the inviscid flow for significant
distances along the tube axis. This fact is demonstrated
by Figure 3 where correlation of experimental data with
Equation 5 is given for velocity profiles measured at two
cross-sections located at a distance of eight tube radii
from each other.

A swirl flow may be described by a set of integral flow
parameters. We do not take into account the influence
of friction losses on the inviscid flow core. This leads to
conservation laws for five integral parameters of inviscid
axisymmetric flow [15]:

Q ¼ 2pq
ZR
0

wzr dr ðflow rateÞ ð6aÞ

G ¼ 2pRwuðRÞ ðvelocity circulationÞ ð6bÞ

M ¼ 2pq
ZR
0

wuwzr2dr ðaxial flux of angular momentumÞ

ð6cÞ

J ¼ 2pq
ZR
0

w2
z þ

Zr
0

w2
u

r
dr þ p0

q

0
@

1
A

0
@

1
Ar dr

ðaxial flux of momentumÞ ð6dÞ

Fig. 1. Axisymmetric helical vortex structure generating a swirl flow in

a tube. Key: (dashed line) shape of helical vortex lines which form the

vortex core; e – radius of the core; (solid line) trajectory of motion of

fluid particles.
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E ¼ 2pq
ZR
0

w2
z þ w2

u

2
þ

Zr
0

w2
u

r
dr þ p0

q

0
@

1
A

0
@

1
Awzr dr

ðaxial flux of energyÞ ð6eÞ

Here q is fluid density and p0 is a static pressure in the
system.

Let us study the vortex structures (Equation 5) which
may exist in the flow for given values of integral
parameters (Equation 6). After substituting the velocity
profile (Equation 5) in Equations 6(a)–(e), we obtain an
equation which defines the vortex parameters C, l, e, w0,
p0. This system leads to the nonlinear equation for the
radius of the vortex core e [14–16]. The dimensionless
form of this equation is

w0ðeÞ �w0ðeÞ
2

Qþ J þ p
2

G2

lðeÞ2
1 � 2

3
e2

� 	 

þ pG2 1

4
� ln e

� 	!
þ p

G
lðeÞ p0ðeÞ 1 � e2

2

� 	�

þ G2

2lðeÞ2
1 � 3

4
e2

� 	
þ G2 1

e2
� 2

3

� 		
¼ E ð7Þ

Investigation of Equation 7 for some given values of
flow integrals, C, Q, M, J and E indicates the existence
of two values for the parameter e (0 � e � R) [14–17]. The
first root e1 corresponds to a positive value of l in
Equations 4 and 5 and to a jet-like swirl flows, when the
axial velocity has a maximum on the flow axis
(Figure 5(a)). We call these types of vortex structure
(l > 0) right-handed helical vortices. The second root e2
corresponds to a negative value of l in Equations 4 and 5
and to a wake-like swirl flow, when the axial velocity
has aminimumon theflowaxis (Figure 5(b)).Wecall these
typesofvortexstructure(l < 0) left-handedhelicalvortices.

So, under the same integral parametersEquation 6, two
different vortex structures may exist in swirl flow. More-
over, the transition fromonevortex structure to another is
also possible within the same flow regime in a cylindrical
tube, for example, in flows with vortex breakdown.
Concrete illustration of the existence the right and the
left handed vortex structures was obtained by means of
experimental data [20], see Figure 2 and Table 1. In this
case the first root e1 corresponds to the jet-like swirl flow
before thebreakdownand the secondone (e2) corresponds
to the wake-like flow after the breakdown (Table 1).

Another example of the existence of two vortex
structures with different helical symmetry is shown on

Fig. 2. Swirl flow with vortex breakdown generated by tangential vane swirler [20]. Velocity profiles before (a) and after (b) breakdown: (points)

measured velocity profiles; (solid lines) approximations by Equation 5.
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Fig. 4. Swirl flows in a tube generated by rotation of honeycomb section [22]. Flows with the same flow rate (Re ¼ 2:8	 105) and different swirl

numbers (S): (circles) velocity profiles measured in [22]; (solid lines) approximations by Equation 5.

Fig. 3. Swirl flows in a tube generated by axial-tangential inlet [21]. Flows with the same flow rate (Re ¼ 2:8	 105) and different swirl numbers

(S): (points) velocity profiles measured in [21] in the first cross-section; (circles) velocity profiles measured in [21] in the second cross-section; (solid

lines) approximations by Equation 5.
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Figure 6. These two different velocity profiles were
obtained under the same integral flow parameters
(Table 1) by means of numerical simulation. In this
case, both vortex structures have identical values of the
tangential velocity near the tube wall, but the ratio of
the axial velocity near the tube wall is 4.

The existence of two types of vortex symmetry means
that the set of integral flow parameters Equation 6 is, in
general, insufficient for classification of swirling pipe
flows. As a consequence, flows with the same Reynolds
number (1) and the same swirl number (2), but with
different helical symmetry of the vorticity field will differ
from the mass transfer point of view. This effect will be
analysed quantitatively in the next paragraphs.

4. Mass flux to the wall in the boundary layer of swirl flow

Here we calculate Sherwood number as a function of the
inviscid swirl flow parameters. The traditional method-

ology for hydrodynamic and diffusion boundary layers
will be used without any empirical hypotheses or
‘analogy’ arguments. For large Schmidt numbers, the
diffusion layer lies within a thin region of the hydrody-
namic boundary layer. For this reason, it is possible to
neglect the curvature of the tube and to use a planar
coordinate system which is related to the wall, see
Figure 7.

We first calculate the velocity profile in the hydrody-
namic boundary layer of the axisymmetric swirl flow in
the tube. The presence of the two velocity components
in the inviscid flow core leads to the 3D equations for
hydrodynamic boundary layer:

uy @ux
@y þ uz @ux@z ¼ m @2ux

@y2

uy @uz
@y þ uz @uz@z ¼ m @2uz

@y2 � 1
q
@p
@z

@uy
@y þ

@uz
@z ¼ 0

8>>><
>>>:

ð8Þ

with the following boundary conditions:

y ¼ 0 : ux ¼ uy ¼ uz ¼ 0

and

y ¼ 1 : ux ¼ wuðRÞ � V ; uz ¼ wzðRÞ � W

The assumption that the flow is axisymmetrical is taken
into account in Equation 8, so all flow characteristics
invariant in the tangential direction (x axis). Equation 8
are exactly the same as those obtained in [23] for the case
of axisymmetrical flow along a body.

For further simplifications of Equation 8, it may be
noted that @p=@z ¼ 0. Indeed, we assume that friction
losses do not influence the inviscid flow core over the
entire mass transfer section (this means constancy of the
velocities V and W). So, the pressure term in the second
equation of (8) vanishes, and the first equation of the

Fig. 5. Profiles of axial (wz) and tangential (wu) velocities in swirl flows

with right (a) and left-handed (b) symmetry of helical vortexes.

Table 1. Comparisons of intensity of mass transfer in swirl flows with different parameters

Type of vortex Regime parameters Vortex parameters Velocities near wall Shswirl=Shaxial

Re Sd S G/UR2 2p l/R a/R w0 /U W/U V/U (section) (electrode)

Set-up with tangential vane swirler [20]

Right-handed 11480 0.79 0.32 2.1 1.9 0.24 1.9 0.9 0.34 0.98 0.97

Left-handed 11480 0.79 0.30 2.0 )2.6 0.38 0.38 1.1 0.32 1.03 1.06

Set-up with axial-tangential input [21]

Axial flow 2.8 	 105 0.0 0.0 – – – 1.0 1.0 0.0 1 1

Right-handed 2.8 	 105 0.1 0.09 1.2 7.2 1.0 1.08 0.91 0.19 0.95 0.96

Right-handed 2.8 	 105 0.35 0.32 2.6 14 0.65 1.15 0.97 0.41 0.98 1.01

Left-handed 2.8 	 105 0.7 0.6 4.4 )6.7 0.5 0.47 1.12 0.70 1.06 1.12

Set-up with rotating honeycomb section as swirler [22]

Right-handed 2.8 	 105 0.5 0.32 3.7 10.8 0.9 1.12 0.85 0.58 0.92 0.98

Right-handed 2.8 	 105 1.0 0.6 7.1 14.8 0.9 1.27 0.79 1.13 0.88 1.07

Model vortices under the same flow parameters: G, Q, M, J, E

Right-handed inviscid flow

and imaginary swirler

1.96 2.667 1.64 0.42 2.4 0.86 2.667 0.93 1.37

Left-handed 0.95 2.667 )0.667 1.0 )0.98 3.0 2.667 1.73 1.91
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system (8) becomes identical with the second. Thus, the
two velocity components become proportional, exactly
as in the case of axisymmetrical flow along a body [23]:

ux
uz

¼ uu

uz
¼ V

W
ð9Þ

Moreover, the second and the third equations of the
system (8) become identical with the equations for a
boundary layer on a flat plate. So, the solution of the
system (8) may be presented in the form:

uu ¼ ux ¼ V /0

�ur ¼ uy ¼ 1
2

ffiffiffiffiffi
mW
z

q
n/0 � /ð Þ

uz ¼ W /0

8><
>: ð10Þ

Here, the function / is a solution of the Blasius equation
[23]. Thus, the local shear stress at the tube wall is given
by the equations:

sz ¼ l
@uz
@y

����
y¼0

¼ 0:332

ffiffiffiffiffiffiffiffiffiffi
lqW
z

r
W ð11aÞ

and

su ¼ l
@ux
@y

����
y¼0

¼ 0:332

ffiffiffiffiffiffiffiffiffiffi
lqW
z

r
V ð11bÞ

where l is the dynamic viscosity and q is the fluid
density.

To describe of mass transfer in the hydrodynamic
boundary layer, we use the steady convective diffusion
equation [18], which in cylindrical coordinates takes the
form:

ur
@c
@r

þ uu
@c
r@u

þ uz
@c
@z

¼D
@

r@r
r
@c
@r

� 	
þ @2c
r2@u2

þ @2c
@z2

� 	
ð12Þ

In the diffusion layer, we may use the usual expansion
for the velocity components (ur; uu; uz), with respect to
the distance from the wall y ¼ R� r:

uz ¼ r � Rð Þ @uz
@r

����
r¼R

and uu ¼ r � Rð Þ @uu

@r

����
r¼R

Fig. 6. Tangential (wu), axial (wz) velocities and pressure distribution

(p) for model swirl flow, results of numerical simulations (3D effects

are neglected): (dashed line) right handed helical vortex; (solid line) left

handed helical vortex.

Fig. 7. System of coordinates for three-dimensional boundary layer in a tube.
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ur ¼
1

2
r � Rð Þ2@

2ur
@r2

� �

¼ � 1

2
r � Rð Þ2 1

R
@

@u
@uu

@r
þ @

@z
@uz
@r

� 	����
r¼R

ð13Þ

In Equation 13 the last relation for the radial compo-
nent of the velocity (ur) is a consequence of the
continuity equation.

As the curvature of the diffusion layer is small with
respect to tube radius, we replace the cylindrical
problem by the planar one. The additional simplification
of Equation 12 follows from the boundary layer ap-
proximation (longitudinal and transversal molecular
diffusion are neglected). As a result, Equation 12 takes
the form:

sz
l
y
@c
@z

� 1

2l
@sz
@z

y2 @c
@y

þ su

l
y
@c
@x

¼ D
@2c
@y2

ð14Þ

where the shear stress s at the tube wall is given by
Equation 11.

The boundary conditions for Equation 14 depend on
the concentration boundary conditions. Two cases are
of importance: (i) mass transfer (global or local) over a
section of the tube [1,5], and (ii) mass transfer at the
surface of a microelectrode flush mounted with the tube
wall [7]. We first consider the problem when the mass
transfer section is a part of a tube of length L. In this
case, the boundary conditions for Equation 14 are:

c ¼ c1 for z ¼ 0 or y ! 1

c ¼ 0 for y ¼ 0 and 0 � z � L
ð15Þ

As the boundary conditions (Equation 15) do not
depend on the tangential coordinate x, we can neglect
this dependence in Equation 14. Thus, the convective
mass transfer in the tangential direction may be omitted
and the integration of Equation 14 with the boundary
conditions of Equation 15 can be done exactly as for the
diffusion to a flat plate [18]. As a result, the following
expression for the mass transfer coefficient to the tube
wall is obtained:

kðzÞ ¼ � D
c1

@c
@y

����
y¼0

¼ D
dðzÞ ð16aÞ

dðzÞ ¼ 2:95 Sc�1=3 mz
W

� �1=2
ð16bÞ

Accordingly, the average Sherwood number is given by:

Sh ¼ 1

D

ZL
0

k zð Þ dz ¼ 0:678 Sc1=3
WL
m

� 	1=2

ð17Þ

Within the frame of the model (e.g., by neglecting
turbulent and 3D effects), the regular inviscid swirl flow

(with W = cte, V = cte) generates hydrodynamic and
diffusion boundary layers similar those developing on a
flat plate, since:

d zð Þ 
ffiffi
z

p

Equations 16 and 17 can be used for the prediction of
mass transfer in relatively short mass transfer sections,
when the influence of friction losses on inviscid flow core
is negligible.

In the case of mass transfer on the surface of a circular
microelectrode flush mounted with the wall, the mass
flux to a surface is defined by the modulus of the local
shear stress and depends on both the axial and the
tangential velocity components of the inviscid flow core.
If the microelectrode is far enough from the flow input,
it is possible to neglect the variations of local shear stress
along the electrode surface and to reduce the problem to
the Leveque solution [24]. Therefore, the following
expression is obtained for the average microelectrode
Sherwood number:

Sh ¼ 0:866

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
z þ s2

u

q ���
z¼z0

d2
0

lD

0
B@

1
CA

1=3

ð18Þ

Here, d0 is the microelectrode diameter and z0 is its
longitudinal coordinate. Substituting the expression for
the local shear stress Equation 11 into Equation 18, we
obtain:

Sh¼ 0:6 Sc1=3
d0

z0

� 	1=6 d0 W ðV 2 þW 2Þ
� �1=3

m

 !1=2

ð19Þ

5. Mass transfer in swirl flows with a different helical

symmetry of vorticity field

In this Section, we shall analyse the influence of different
types of helical symmetry on mass transfer. The tradi-
tional approach to mass transfer in swirl flows is based
on Equation 3, where Re is the main parameter and the
empirical constant a and the power n depend on the
swirl number S. In Section 3, we have demonstrated
that under the same flow conditions (Re, S constant)
two different types of swirl flow may exist with jet- and
wake-like profiles of axial velocity. These two flow
regimes were observed [11, 12 and 25] in swirl flows with
vortex breakdown with a wide range of Reynolds
number (from 1500 to 300 000). Thus, the traditional
correlation of Sherwood number by means of Equa-
tion 3 is, in general, insufficient.

To quantitatively examine this problem, we have used
experimental data of [20–22] and the above-mentioned
numerical simulations of velocity profiles (Figures 2–4
and 6). In order to simplify comparison of mass transfer
in different swirl flows, all the results are presented in
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Table 1. Three different experimental set-ups and one
virtual swirl flow obtained by means of numerical
simulation are given in this Table. The first three
columns of Table 1 give some hydrodynamic parameters
traditional for swirl flows—the Reynolds number Re
and the swirl number S. For the swirl number, we use
the definition given by the authors (Sd), which is specific
for each set-up, and the more general definition by
means of the Equation 2. Columns 4–9 give the param-
eters of the inviscid flow core, which were obtained by
means of Equations 4 and 5 and experimental informa-
tion reported in [20–22]. Column 4 gives the flow
circulation (C); columns 5 and 6 give the pitch of vortex
lines (l ) and the radius of the vortex core (e) (Figure 1
and Equations 4 and 5); columns 7–9 give the axial
component of the inviscid flow on the axis (w0) and near
the wall (W) and the tangential component of the
inviscid flow near the wall (V). In the last two columns
we give the ratio of Sherwood number for swirl flow to
the Sherwood number for axial developing flow with the
same flow rate. Column 10 corresponds to the case
where the mass transfer section is part of tube wall,
Equation 17. Finally column 11 correspond to the case
of mass transfer on the surface of a microelectrode,
Equation 19.

We first consider the flow with vortex breakdown
(Figure 2), generated by a tangential vane swirler [20].
For this flow, we can predict the difference in mass
transfer characteristics for different types of vortices.
This difference is not very pronounced because of the
small value of the swirl number S. One can see that left-
handed vortex increases the mass transfer in comparison
to axial developing flow with the same Re number. The
right-handed vortex is not so efficient and can even
decrease the mass transfer with respect to the axial
developing flow.

A similar conclusion can be obtained from the
analysis of flow regimes obtained on two other exper-
imental set-ups with a cylindrical working section. In the
first set-up [21] the swirl flows were induced by an axial–
tangential inlet. In the second set-up [22] a rotating
honeycomb section was used as the swirler. It is possible
to see a lack of similarity between the flows with the
same Re for the case where the swirl number S ¼ 0:6.
Indeed, the transition from a jet-like to a wake-like axial
velocity profile was observed with increase of the swirl
number from 0.32 up to 0.6 in [21], whereas this effect
was not noted in [22]. A comparison of mass transfer in
these flows for both set-ups gives a rather pronounced
(about 20%) difference in Sherwood number for flows
with the same values of Re and S, but with different
helical symmetry of the vorticity field.

The difference in mass transfer related to the vortex
symmetry can be essential, as shown by the example of a
model vortex (last two lines in Table 1). We have
simulated two velocity profiles of inviscid flow Equa-
tion 5 which have the same integral flow parameters
(Equation 6), but different type of helical symmetry of
the vorticity field. Conservation of all integral flow

parameters (Equation 6) is essential for correct com-
parison of different flow regimes. For this case, the left-
handed vortex is about two times more efficient with
respect to mass transfer than the right handed vortex.
The right-handed vortex decreases the mass transfer in
comparison to the developing axial flow with the same
Re.

6. Discussion and conclusions

The mathematical model of mass transfer in swirl flows
developed in this work can be used for both academic
and engineering purposes. Traditional notions of ‘con-
tinuous’ and ‘decaying’ swirl flows should be specified.
In this study we have used a model of a regular (or
established) inviscid vortex core. The established vortex
core can exist over relatively short mass transfer sections
where the influence of friction losses is not important.
For this type of swirl flow, for an experimenter
providing LDA measurements in the inviscid core, the
regime is ‘established’. On the other hand, the local
shear stress and local mass transfer coefficient in this
flow vary along the mass transfer section, as well as on
the flat plate. So, for an experimenter providing electro-
chemical flow measurements by means of flush mounted
microelectrodes the flow is ‘decaying’. Clearly, the
development of an inviscid vortex core along the mass
transfer section is also possible due to friction losses or/
and 3D and turbulent effects. The study of these effects
is not the object of this paper.

Secondly, the model gives an explanation of the effect
the duality of swirl motion on mass transfer. Usually, it
is reported that swirl flows increase mass transfer in
comparison with axial flows at the same Re. Neverthe-
less, there are experimental data showing that swirl can
decrease mass transfer, especially for low Re. For
example, in [2] it is reported that, in the entrance region
of decaying annular swirl flow, mass transfer is smaller
than in axial flow for Re < 6000. The data reported in [5]
also indicate some regimes (Re ¼ 3348) where the local
mass transfer in annular swirl flow decreases with
respect to fully developed annular flow. The data of [3]
show that, depending from the position of the mass
transfer section with respect to the flow inlet, the mass
transfer coefficient in pure swirl flow for the laminar
regime (Re < 1000) can be larger or smaller than that in
developing laminar axial flow in annulus. This duality
can be explained by the existence of two types of
axisymmetrical swirl flow. Swirl flows with wake-like
velocity profile increase the mass transfer, whereas swirl
flows with jet-like velocity profile are not so efficient,
and can even decrease mass transfer in comparison to
axial flows. 3D effects in mass transfer, which are not
taken into account in the present study, can compensate
the relative decrease of mass transfer due to the jet-like
character of the axial velocity.

It is also important to emphasize that the model
shows that, in swirl flow, the correlations of Sherwood

33



number by means of two hydrodynamic parameters (the
Reynolds and the swirl numbers) are, in general,
insufficient. Indeed, in swirl flow with the same integral
characteristics two types of vortex structures can exist,
with left-handed and right-handed helical symmetry.
The left-handed helical vortexes generate wake-like swirl
flows and the right-handed vortex structures generate
jet-like swirl flows. Our estimations show (Table 1) that
under the same integral flow characteristics the change
in vortex symmetry can increase the mass transfer by a
factor of at least two.

From the engineering point of view, this study leads to
two important conclusions: (i) in swirl devices it is
preferable to generate left-handed vortex structures in
order to increase mass transfer; and (ii) spontaneous
transition from on to another type of vortex symmetry is
possible in swirl devices even if all the integral flow
parameters are well controlled. The transition to anoth-
er vortex symmetry can provoke a significant change in
mass transfer characteristics (by at least a factor of two).
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